Kerflyn's Blog

Well… It's a blog!

Archive for the ‘Programming’ Category

[FR] Brown Bag Lunch (BBL)

with one comment

À la manière de David Gageot, je propose de venir dans votre entreprise entre midi et 2 pour vous présenter une session de code sur un sujet donné… contre un sandwich.

Web Framework in Scala

Plutôt que de réaliser des sessions de code qui resteront enfermées dans ma société, je propose de partager avec vous les sessions les plus réussies. Pour ce faire, j’ai besoin :

  • d’une date,
  • d’une salle (avec son adresse et éventuellement des gens dedans),
  • d’un projecteur,
  • d’un sandwich ^^

Actuellement, je propose les sujets suivant :

  • Réaliser en Scala en moins d’une heure un framework Web qui poutre
    Découverte de Scala à travers la réalisation d’un mini framework tout en restant lisible
  • Fabriquez vous même votre type Option
    Tests unitaires et refactoring pour comprendre la monade Option en Java 8

Par la suite, d’autre sujet pourrait venir.

Sinon, je suis principalement disponible sur Paris et proche Paris.

Tout le détail est ici : https://kerflyn.wordpress.com/bbl/

Advertisements

Written by fsarradin

2013/02/06 at 01:10

Posted in Programming

Tagged with ,

Playing with Scala Parser Combinator

with 3 comments

Notice
The work in this article is in progress. But you are free to read it in its current state and free to post comments. If you want to see the change set, go to the bottom of the page.

Maybe you are of those people who gets headache when writing a parser. LL or LALR grammars, lex and yacc/bison are completely unknown or are some sort of old phantoms from the past, that you are trying to forget since you have leaved the university. You cannot imagine that creating a parser can be as easy as 1-2-3. But, did you take a look at parser combinators?

A really simple parser

Parser combinators comes directly from functional programming to help you create complex parsers in a declarative way. From the Scala point of view, it looks like writing almost directly an EBNF grammar.

Here, we start with a really simple parser that recognizes the string "hello" only.

import scala.util.parser.combinator.RegexParsers

object ReallySimpleParser1 extends RegexParsers {
  def hello = "hello"
}

First, notice that your parser combinator must be declared has an object (a kind of mix between a singleton and a purely static class). It has to extends one of the object derived from Parsers. RegexParsers is one of them. JavaTokenParsers is another one, with some predefine parsers to recognize Java-compliant identifiers, numbers, strings, etc.

Second, you can see that the pattern to recognize is declared through the method hello. The method hello is a Parser and more exactly a Parser[String]. A Parser[+T] is a function that takes an input and returns a ParseResult[T]. A ParseResult is a class that has three children:

  • Success: the parser has recognized the input. The instance of Success contains the result and the remaining input.
  • Failure: the parser has not recognized the input and will back-track. The instance contains an error message and the remaining input.
  • Error: something fatal occurred. The instance contains an error message and the remaining input. No back-track is proceeded.

Usually, to use your parser combinator, you have to call the method parseAll. It takes a Parser (like our method hello above) and a char sequence as parameters. parseAll returns a ParseResult.

Below are two tests as it would appear in tests based on specs2. They show the use of our really simple parser:

import org.specs2.mutable._
import org.specs2.matcher.ParserMatchers

class ReallySimpleParser1Test extends Specification with ParserMatchers {
  val parsers = ReallySimpleParser1

  import ReallySimpleParser1.hello

  "hello" should {
    "succeed to recognize 'hello'" {
      hello must succeedOn("hello").withResult("hello")
    }
    "fail to recognize 'world'" {
      hello must failOn("world")
    }
}

Parse numbers

RegexParsers is used for parsers based on regular expressions. The previous example does not show this.

Below is an example that recognizes numbers. It uses a regular expression to do so:

object NumberParser extends RegexParsers {
  def number: Parser[Int] = """-?\d""".r ^^ { _.toInt }
}

The number parser is more exactly defined in the method number with the regular expression -?\d+ where -? represents the optional sign, \d represents a digit, and thus \d+ a series of at least one digit. The regular expression is followed by a function. The operation ^^ says that if the previous pattern is recognized then apply the following function. The function have to take a string in parameter, representing the recognized sequence, and can return a value of any kind (limited to what has been declared for the method). Otherwise, the method that defines the parser returns implicitly a Parser[String].

number must succeedOn("42").withResult(42)
number must succeedOn("-24").withResult(-24)
number must failOn("hello")

Yet another simple example to parse a sequence

object ReallySimpleParser2 extends RegexParsers {
  def sentence = hello ~ world
  def hello = "hello"
  def world = "world"
}
  • a ~ b parse a sequence made of a then b
  • a | b introduce an alternative parser that parses a or b
  • a? introduce an optional parser
  • a* introduce on optional and repeatable parser
  • a+ introduce a repeatable parser
  • a ~> b like ~ but ignore the left member (a)
  • a <~ b like ~ but ignore the right member (b)

Parse an arithmetic expression and evaluate it

Remember my previous article on Scala? The one talking about pattern matching? Do you remember that it ends with a way to evaluate arithmetic expressions based on a kind of AST? Here I present the missing part of this article: the parse of an arithmetic expression to generate the AST.

sealed abstract class ExpressionSymbol
case class Const(value: Int) extends ExpressionSymbol
case object X extends ExpressionSymbol
case class Add(x: ExpressionSymbol, y: ExpressionSymbol) extends ExpressionSymbol
case class Mul(x: ExpressionSymbol, y: ExpressionSymbol) extends ExpressionSymbol
object ExpressionParser extends RegexParsers {
  def expression = operation1
  def operation1: Parser[ExpressionSymbol] = operation2 ~ rep("+" ~ operation2) ^^ {
    case op ~ list => list.foldLeft(op) {
      case (x, "+" ~ y) => Add(x, y)
    }
  }
  def operation2: Parser[ExpressionSymbol] = operand ~ rep("*" ~ operand) ^^ {
    case op ~ list => list.foldLeft(op) {
      case (x, "*" ~ y) => Mul(x, y)
    }
  }
  def operand: Parser[ExpressionSymbol] = (constant | variable)
  def variable: Parser[ExpressionSymbol] = "x" ^^ { _ => X }
  def constant: Parser[ExpressionSymbol] = """-?\d+""".r ^^ { s => Const(s.toInt) }

  def apply(input: String): Option[ExpressionSymbol] = parseAll(expression, input) match {
    case Success(result, _) => Some(result)
    case NoSuccess(_, _) => None
  }
}

There is a method apply that aims to simplify the use of the parser. It only takes a string in parameter. It parses it and returns an Option that indicates if the parse has succeeded or failed.

Changeset

  • [2012-08-25] initial publication
  • [2012-09-07] added more explanation for the first example + show longer version for the first test

Written by fsarradin

2012/08/25 at 20:42

Towards Pattern Matching in Java

with 9 comments

Pattern matching is such a cool feature that you always dream of in your language to represent alternative structures. It already exists in OCaml, in Haskell, or in Scala (here is an post in this blog showing the different usages of the pattern matching in Scala: Playing with Scala’s pattern matching). In Java, what is almost closed to pattern matching is named switch-case. But, you’re limited to scalar values (chars, integer types, booleans), enum types, and since Java 7 you can use strings. With the Java’s switch-case, you don’t have a way to check the type of arguments or to really mix the different kind of check, for example. These are features that pattern matching provides.

In this post, we’ll study a possibility to get an implementation in Java close to pattern matching. We’ll use lambda expressions of Java 8 in a view to get a more readable structure. Here, I don’t propose to make a real pattern matching, but to get a structure that can match different kinds of patterns and which is more flexible than the traditional switch-case.

Main implementation

First, we need a PatternMatching class. This class is a set of Pattern instances. Each Pattern can check if a value matches (a pattern) and is bound to a process/function that it can apply on.

The class PatternMatching provides just the method matchFor. This method tests the different Pattern instances that it contains to a value. If a Pattern matches, the method matchFor is applied to the value the function bound to the Pattern. If no pattern has been found, the method throws an exception.

To instantiate this class, you’ll need to provide a set of patterns.

public class PatternMatching {
    private Pattern[] patterns;

    public PatternMatching(Pattern... patterns) { this.patterns = patterns; }

    public Object matchFor(Object value) {
        for (Pattern pattern : patterns)
            if (pattern.matches(value))
                return pattern.apply(value);

        throw new IllegalArgumentException("cannot match " + value);
    }
}

Pattern

Pattern is an interface that provides two methods. matches should check if an object meets some requirements. apply should execute a process on a object. apply should be called once matches succeeded.

public interface Pattern {
    boolean matches(Object value);
    Object apply(Object value);
}

A first Pattern example: pattern for types

For example, ClassPattern is a Pattern implementation that checks the type of a value.

public class ClassPattern<T> implements Pattern {

    private Class<T> clazz;

    private Function<T, Object> function;

    public ClassPattern(Class<T> clazz, Function<T, Object> function) {
        this.clazz = clazz;
        this.function = function;
    }

    public boolean matches(Object value) {
        return clazz.isInstance(value);
    }

    public Object apply(Object value) {
        return function.apply((T) value);
    }

    public static <T> Pattern inCaseOf(Class<T> clazz, Function<T, Object> function) {
        return new ClassPattern<T>(clazz, function);
    }
}

Take a look at the example below:

PatternMatching pm = new PatternMatching(
    inCaseOf(Integer.class, x -> "Integer: " + x),
    inCaseOf(Double.class, x -> "Double: " + x)
);

System.out.println(pm.matchFor(42));
System.out.println(pm.matchFor(1.42));

This code displays:

Integer: 42
Double: 1.42

Usual patterns

Here are some “usual patterns”, in the sense that they imitate some functionality you already have with switch-case. First, we start with the pattern to match strings:

public class StringPattern implements Pattern {
    private final String pattern;
    private final Function<String, Object> function;

    public StringPattern(String pattern, Function<String, Object> function) {
        this.pattern = pattern;
        this.function = function;
    }

    @Override
    public boolean matches(Object value) { return pattern.equals(value); }

    @Override
    public Object apply(Object value) { return function.apply((String) value); }

    public static Pattern inCaseOf(String pattern, Function<String, Object> function) {
        return new StringPattern(pattern, function);
    }
}

Now, here is a pattern to match integers:

public class IntegerPattern implements Pattern {
    private final Integer pattern;
    private final Function<Integer, Object> function;

    public IntegerPattern(int pattern, Function<Integer, Object> function) {
        this.pattern = pattern;
        this.function = function;
    }

    @Override
    public boolean matches(Object value) { return pattern.equals(value); }

    @Override
    public Object apply(Object value) { return function.apply((Integer) value); }

    public static Pattern inCaseOf(int pattern, Function<Integer, Object> function) {
        return new IntegerPattern(pattern, function);
    }
}

And to finish, here is a pattern that matches everything. It is the equivalent of default in switch-case.

public class OtherwisePattern implements Pattern {
    private final Function<Object, Object> function;

    public OtherwisePattern(Function<Object, Object> function) {
        this.function = function;
    }

    @Override
    public boolean matches(Object value) { return true; }

    @Override
    public Object apply(Object value) { return function.apply(value); }

    public static Pattern otherwise(Function<Object, Object> function) {
        return new OtherwisePattern(function);
    }
}

Now, you can express something like this:

PatternMatching pm = new PatternMatching(
    inCaseOf(Integer.class, x -> "Integer: " + x),
    inCaseOf(      "world", x -> "Hello " + x),
    inCaseOf(           42, _ -> "forty-two"),
    otherwise(              x -> "got this object: " + x.toString())
);

Factorial based on PatternMatching

Our pattern matching API in Java 8 can define the body of recursive functions:

public static int fact(int n) {
    return ((Integer) new PatternMatching(
            inCaseOf(0, _ -> 1),
            otherwise(  _ -> n * fact(n - 1))
    ).matchFor(n));
}

Here, we use the lambda expressions to improve the readability. In this case, Java 8 is necessary. But it is easy to use the implementations of PatternMatching and Pattern above with former versions of Java. Nevertheless, you have to sacrify the readability.

For example, here is the implementation of the same factorial function for versions 6 and 7 of Java:

public static int fact_old(final int n) {
    return ((Integer) new PatternMatching(
            inCaseOf(0, new Function<Integer, Object>() {
                @Override
                public Object apply(Integer _) {
                    return 1;
                }
            }),
            otherwise(new Function<Object, Object>() {
                @Override
                public Object apply(Object _) {
                    return n * fact(n - 1);
                }
            })
    ).matchFor(n));
}

Conclusion

In this post, we’ve seen a way to define a structure close to pattern matching. This structure helps us to extend the semantic of switch-case in Java. Besides, it’s extendable with new implementations based on Pattern. The use of the Java 8’s lambda expressions make it more readable.

Nevertheless, if a PatternMatching is defined in a method, it’ll be completely reinstantiated at each call of this method. But if performance is needed, you can store the pattern matching in a constant.

So, we are able to represent pretty much the same functionnality than switch-case. The usual patterns I haven’t presented can be easily implemented. In addition, we can find a way to do pattern matching based on regular expressions. What is missing here is the ability to aggregate a set of patterns to the same process (ie. a kind of OR relation between some patterns for the same process), the addition of guard condition and above all the ability to represent algebraic types and use them in our structure.

Written by fsarradin

2012/05/09 at 22:39

From Option to Monad with Java Only

leave a comment »

In a previous post, I’ve shown how to use the type Optional provided by Guava, in a view to create a monad. Personally, I’m not satisfied with the resulting code. Since, I’ve found another way to represent the Option monad in Java only, and the new representation seems to be better.

So we start with an interface to represent functions (this is the same as the Guava).

public interface Function<T, R> {
  R apply(T input);
}

Then we implement the Option type. This type contains three monadic operations :

  • wrap that converts an object into an Option,
  • andThen that applies a function to the current instance of Option,
  • fail that returns a None instance.

I add also two getter methods : get and isPresent.

public abstract class Option<T> {

  // opérations de base

  public abstract T get();

  public abstract boolean isPresent();

  // opérations monadiques

  public static <T> Option<T> wrap(T element) { return new Some<T>(element); }

  public static <T> Option<T> fail() { return new None<T>(); }

  public abstract <U> Option<U> andThen(Function<T, Option<U>> function);

}

And now, here is the implementation of the classes Some and None.

public class None<T> extends Option<T> {

  public T get() { throw new IllegalStateException(); }

  public boolean isPresent() { return false; }

  public <U> Option<U> andThen(Function<T, Option<U>> function) {
    return new None<U>();
  }

}

public class Some<T> extends Option<T> {

  private T element;

  private Some(T element) { this.element = element; }

  public T get() { return element; }

  public boolean isPresent() { return true; }

  public <U> Option<U> andThen(Function<T, Option<U>> function) {
    return function.apply(this.element);
  }

}

To come back to the example of the previous post, here are implementations of the different accessors that enables you to explore the (ugly) recursive structure made of Java Maps representing a set of products arranged according to their supplier, city, and country:

public static Function<
  Map<String, Map<String, Map<String, Map<String, Product>>>>,
  Option<Map<String, Map<String, Map<String, Product>>>>
>
accessCountry(String country) {
    return getFromKey(country);
}

public static Function<
  Map<String, Map<String, Map<String, Product>>>,
  Option<Map<String, Map<String, Product>>>
>
accessCity(String city) {
    return getFromKey(city);
}

public static Function<
  Map<String, Map<String, Map<String, Product>>>,
  Option<Map<String, Map<String, Product>>>
>
accessCity(String city) {
    return getFromKey(city);
}

public static Function<
  Map<String, Map<String, Product>>,
  Option<Map<String, Product>>
>
accessSupplier(String supplier) {
    return getFromKey(supplier);
}

public static Function<
  Map<String, Product>,
  Option<Product>
>
accessProduct(String productCode) {
    return getFromKey(productCode);
}

Here is the definition of the method getFromKey:

public static <K, V> Function<Map<K, V>, Option<V>> getFromKey(final K key) {
    return new Function<Map<K, V>, Option<V>>() {
        @Override
        public Option<V> apply(Map<K, V> map) {
            V value = map.get(key);
            if (value == null) {
                return Option.none();
            }
            return Option.wrap(value);
        }
    };
}

Now look how the method getProductFrom is simplified:

public Option<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

  return wrap(productsByCountry)
    .andThen(accessCountry(country))
    .andThen(accessCity(city))
    .andThen(accessSupplier(supplier))
    .andThen(accessProduct(code));
}

But I cheating a little bit with the way monads are usually used. Normally, a succession of process calls within a monad isn’t a linear chaining like in the example above, but a kind of recursive chaining. I can get such a chaining (without the ugliness of the Java verbosity) if I use the lambda expression of Java 8.

public Option<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

  return getFrom(productsByCountry, country).andThen(
         cities -> getFrom(cities, city).andThen(
         suppliers -> getFrom(suppliers, supplier).andThen(
         products -> getFrom(products, code))));
}

public <K, V> Option<V> getFrom(Map<K, V> map, K key) {
  V value = map.get(key);
  if (value == null) {
    return Option.none();
  }
  return Option.wrap(value);
}

As a remainder, the construct x -> f(x) currently defines a lambda expression in Java 8.

Written by fsarradin

2012/04/23 at 23:19

From Optional to Monad with Guava

with 6 comments

Guava is a kind of Swiss Army knife API proposed by Google for Java 5 and more. It contains many functionalities that help the developer in its every day life. Guava proposes also a basic functional programming API. You can represent almost statically typed functions with it, map functions on collections, compose them, etc. Since its version 10.0, Guava has added a new class called Optional. It’s an equivalent to the types Option in Scala or Maybe in Haskell. Optional aims to represent the existence of a value or not. In a sense, this class is a generalization of the Null Object pattern.

In this article, we see the Optional class in action through two use cases involving java.util.Map instances. The first use case is a very basic one. It shows how to use the Optional class. The second use case is based on a problem I’ve met in a real project. We’ll see if Optional is helpful in this case.

Optional vs. null

Suppose that you want to get a value from a Map. The value is supposed to be located under the key "a", but you aren’t sure. In the case where the key "a" doesn’t exist, the Map implementation is supposed to return null. But, you want to continue with a default value.

Here, you have two solutions. This one

Integer value = map.get("a");
if (value == null) {
    value = DEFAULT;
}
process(value);

And, this one

Integer value = map.get("a");
process(value == null ? DEFAULT : value);

In order to use the Optional class, we need to define a new accessor for Map instances.

public static <K, V> Optional<V> getFrom(Map<K, V> map, K key) {
    Optional.fromNullable(maps.get(key))
}

We notice that you can instantiate Optional by different ways: 1/ by a call to Optional.absent() if there is nothing to return (except the Optional instance), 2/ by of call to Optional.of(value) if you want to return a value. It sounds logical that an accessor to Map returns an Optional, because you aren’t sure that the given key exists in the Map instance.

Below is the same program but using Optional class.

process(getFrom(map, "a").or(DEFAULT));

With this code, we don’t see null anymore.

Going further: Optional to the limit

Now, we suppose that we develop a application based on a set of products differentiated by a unique identifier. The products are organized by product identifier, supplier, city, and country. In order to stock these products, imbricated Map are used: the first level uses the country, the second level uses the city, the third level uses the supplier, and the fourth level uses the product identifier to give access to the product. Here is the code you get with no use of Optional class (please, don’t do this at work! Seriously, don’t do this!)

public Product getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

    Map<String, Map<String, Map<String, Product>>> productsByCity = productsByCountry.get(country);
    if (productsByCity != null) {
        Map<String, Map<String, Product>> productsBySupplier = productsByCity.get(city);
        if (productsBySupplier != null) {
            Map<String, Product> productsByCode = productsBySupplier.get(supplier);
            if (productsByCode != null) {
                return productByCode.get(code);
            }
        }
    }
    return null;
}

This doesn’t sounds great, is it?

Now, below is the solution using Optional class.

public Optional<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

    Optional<Map<String, Map<String, Map<String, Product>>>> productsByCity
        = getFrom(productsByCountry, country);
    if (productsByCity.isPresent()) {
        Optional<Map<String, Map<String, Product>>> productsBySupplier
            = getFrom(productsByCity.get(), city);
        if (productsBySupplier.isPresent()) {
            Optional<Map<String, Product>> productsByCode
                = getFrom(productsBySupplier.get(), supplier);
            if (productsByCode.isPresent()) {
                return getFrom(productByCode.get(), code);
            }
        }
    }
    return Optional.absent();
}

It looks ugly too!

In a view to simplified this implementation, I propose to introduce the notion of monad.

Option(al) monad

A monad is a programming structure with two operations: unit and bind. Applied to the Optional class, unit converts a value into an Optional instance and bind applied to an Optional a function from value to Optional. Below, you’ve there definitions in Java:

public class OptionalMonad {
    public static <T> Optional<T> unit(T value) {
        return Optional.of(value);
    }

    public static <T, U> Optional<U> bind(
            Optional<T> value,
            Function<T, Optional<U>> function) {
        if (value.isPresent()) return function.apply(value.get());
        else return Optional.absent();
    }
}

Notice that bind checks the presence of a value before to apply the function.

Now, to be used by our example in the section above, we need to define a function that will be used as parameter for the bind operator. This function is based on the method getFrom, previously defined, which gives access to a value of a Map from a given key.

public static <K, V> Function<Map<K, V>, Optional<V>> getFromKey(final K key) {
    return new Function<Map<K, V>, Optional<V>>() {
        @Override
        public Optional<V> apply(Map<K, V> map) {
            return getFrom(map, key);
        }
    };
}

Here is the new code

public Optional<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

    Optional<Map<String, Map<String, Map<String, Product>>>> productsByCity
        = bind(unit(productsByCountry), Maps2.<String, Map<String, Map<String, Map<String, Product>>>>getFromKey(country));
    Optional<Map<String, Map<String, Product>>> productsBySupplier
        = bind(productsByCity, Maps2.<String, Map<String, Map<String, Product>>>getFromKey(city));
    Optional<Map<String, Product>> productsByCode
        = bind(productsBySupplier, Maps2.<String, Map<String, Product>>getFromKey(supplier));
    Optional<Product> product
        = bind(productsByCode, Maps2.<String, Product>getFromKey(code));

    return product;
}

Or more directly

public Optional<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

  return bind(bind(bind(bind(unit(productsByCountry),
    Maps2.<String, Map<String, Map<String, Map<String, Product>>>>getFromKey(country)),
    Maps2.<String, Map<String, Map<String, Product>>>getFromKey(city)),
    Maps2.<String, Map<String, Product>>getFromKey(supplier)),
    Maps2.<String, Product>getFromKey(code));
}

OK! It’s weird too. We have to ‘fight’ with inline recursive calls of the bind method and also with Java generics. The Java type inference system isn’t sufficiently powerful to guess them. To reduce occurrences of generics in this code, we could have written a specific version of getFromKey method for each part of the given Map: getFromCountry, getFromCity, getFromSupplier, etc. This moves and distributes the complexity of the code in those methods.

public
Function<
  Map<String, Map<String, Map<String, Map<String, Product>>>>,
  Optional<Map<String, Map<String, Map<String, Product>>>>
>
getFromCountry(String country) {
  // type inference system knows what to do here
  return Maps2.getFromKey(country);
}

// declaration of the other methods here
// ...

public Optional<Product> getProductFrom(
  Map<String, Map<String, Map<String, Map<String, Product>>>> productsByCountry,
  String country, String city, String supplier, String code) {

  return bind(
    bind(
      bind(
        bind(
          unit(productsByCountry),
          getFromCountry(country)),
          getFromCity(city)),
          getFromSupplier(supplier)),
          getFromCode(code));
}

The positive side lies into the fact that the if imbrications have disappeared and the code is linear. Notice that due to the bind operator, if one of those call to getFromKey method returns an Optional.absent(), then all the following call to bind will also return an Optional.absent().

Is there an happy end for this?

It’s difficult to do something better in Java by using the Optional class (unless you have better solution). By considering another JVM language, you’ve below a solution in Scala.

def getProductFrom(products: Map[String, Map[String, Map[String, Map[String, Product]]]],
                   country: String, city: String, supplier: String, code: String): Option[Product] = {
  for (
    cities <- products.get(country);
    suppliers <- cities.get(city);
    codes <- vendors.get(supplier);
    product <- codes.get(code)
  ) yield product
}

Here, the for structure provides syntactic sugar to do something close to imperative programming. But in fact, each line in this for structure does the same thing as our previous implementations using the bind operator. The get method here acts the same way as our getFrom method by returning an instance of the type Option. The type Option in Sala is equivalent to the type Optional in Guava. So when you call our Scala version of getProductFrom, if all your parameters appears in the Map, it returns a product. But if one of the parameter isn’t present, you get the default value.

In Other JVM languages proposes the safe-navigation or null-safe operator value?.method(), like in Groovy, in Fantom, in Gosu, etc. It checks if the value isn’t null before calling the method.

// get a product or null
product = products?.get(country)?.get(city)?.get(supplier)?.get(code)

For the kind of problems presented in this post, the null-safe operator does a better job than the monad approach. In fact, monads represent a programming structure with a really wider scope. Associated with types other than Optional, you can extend the application field of monads and get the necessary expressivity to explore non-determinism, concurrent programming, handle of errors, etc.

Conclusion

So, we’ve seen the class Optional provided by Guava in two use cases. For the simple case, we’ve seen how Optional helps to make null reference disappears. But for the complex case, we’ve seen that Optional alone provides no real advantage. Optional class can make the approach a little easier if we introduce the notion of Optional monad. Thereby, not only the null references disappear but also the recursive if structure. But, we have to fight with the Java generics. And even after this, the code is still hard to read.

It seems clear that to explore a recursive data structure made of Map with Java, you have to choose between to fight with if statements or to fight with generics. But, Java may be not the good language for this kind of problem. In other hand, you should ask yourself if using such a structure is a judicious choice?


EDIT 2012-02-23: simplified getFrom method + corrected the returned type from getFromCountry method.

Written by fsarradin

2011/12/05 at 00:16

Implementing the Factorial Function Using Java and Guava

with one comment

What I like with factorial function is that it’s easy to implement by using different approaches. This month, I’ve presented functional programming and some of its main concepts (recursion, tail recursion optimization, list processing) through different ways to code the factorial function. After the presentation, I’ve asked the audience to implement the factorial by using a recursive and a tail recursive approaches, with Java alone, then with Guava’s Function interface.

In this post, we see the solutions of the exercises I’ve proposed and some explanation about the functional programming concepts used.

Factorial

Here is a reminder of the behavior of the factorial:

The factorial of a given integer n (or n!) is the product of the integers between 1 and n.

In imperative style, you write the factorial like this:

public static int factorial(int n) {
    int result = 1;
    for (int i = 1; i <= n; i++) {
        result *= i;
    }
    return result;
}

The recursive solution in Java

The previous implementation of factorial is based explicitly on state manipulation: the variable result is changed successively in the for loop at each iteration. The functional approach dislike particularly the explicit manipulation of a state in the body of a function. Usually, functional programming prohibits the use of loops like for, while, repeat, etc., for this reason. The only way to express a loop is to use recursion (ie. a function that calls itself).

In Mathematics, you express the factorial recursively like this:

0! = 1
n! = n . (n – 1), for n > 0

Or in plain English:

The factorial of 0 is 1 and the factorial of n is the product between n and the factorial of the preceding integer.

The implementation in Java of the recursive factorial is closed to the mathematic definition:

public static int factorial(int n) {
    if (n == 0) return 1;
    else return n * factorial(n - 1);
}

Recursive solution in Guava

Guava proposes a function representation as object. It’s based on the generic interface Function<T, R>. It looks like this very simple implementation:

public interface Function<T, R> {
    R apply(T value);
}

T is the input type and R the returned type of the function. If you create an instance based on the interface Function, you’ve to defined the method apply(), that represents the body of the function. Here’s the implementation of the recursive version of factorial based on Guava:

Function<Integer, Integer> factorial = new Function<Integer, Integer>() {
    @Override public Integer apply(Integer n) {
        if (n == 0) return 1;
        else return n * apply(n - 1);
    }
};

If you want to use this function, you’ve to write this:

Integer result = factorial.apply(5);

The Guava approach has this particularity to allow you to declare recursive and anonymous functions:

Integer result = new Function<Integer, Integer>() {
    @Override public Integer apply(Integer n) {
        if (n == 0) return 1;
        else return n * apply(n - 1);
    }
}.apply(5);

Tail recursion in Java

There’s another way to implement the recursive version of the factorial. This approach consists in having the recursive call executed just before to return from the function. There must have no other instruction to execute between the recursive call and the return instruction. This approach is called tail recursion. The previous implementation isn’t a case of tail recursion, because you have to execute a multiplication between n and the value returned by the recursive call before to exit the function.

In order to implement a tail recursive factorial, we have to introduce a second parameter (named k) to the function. This parameter contains the partial result of the function through the successive recursive calls. Once the stop condition is reached, k contains the final result. Below, you’ve the implementation of the tail recursive factorial:

private static int fact(int n, int k) {
    if (n == 0) return k;
    else return fact(n - 1, n * k);
}

public static int factorial(int n) {
    return fact(n, 1);
}

Notice that for the first call, the parameter k is initialized to 1. This relates to the basis case: when n is 0 then the function should return 1.

Motivation behind the tail recursion

There’s an important difference in behavior between the recursive and the tail recursive implementations. These difference is visible through the the call stack. In the recursive case, the result is built as you come back from recursive calls. Here is the different states of the call stack in recursive version when we call factorial(5):

-> factorial(5)  // first call
  -> factorial(4)
    -> factorial(3)
      -> factorial(2)
        -> factorial(1)
          -> factorial(0)  // here, we've reached the stop condition
          <- 1
        <- 1 = 1 * 1  // all remaining multiplications are executed
      <- 2 = 2 * 1
    <- 6 = 3 * 2
  <- 24 = 4 * 6
<- 120 = 5 * 24  // we have computed the result in the last return

Now, you can see the call stack for the tail recursive implementation for the same call:

-> fact(5, 1)  // first call
  -> fact(4, 5)  // result is built through the successive calls
    -> fact(3, 20)
      -> fact(2, 60)
        -> fact(1, 120)
          -> fact(0, 120)  // here, we've reached the stop condition
          <- 120  // the final result is obtained directly in the last recursive call
        <- 120
      <- 120
    <- 120
  <- 120
<- 120

You can notice that when we’re coming back from the recursive calls here, the same value is returned. Thus, we can easily imagine to optimize the tail recursive implementation. In fact, there two possible optimizations at this level. The first one is call trampolining. It consists in generating some small modification where recursive call is marked bounce and return is marked landing. Then an external fonction is used to emulate the recursive calls based on a while loop.

The second optimization uses a deeper transformation of the source code, where the while loop is directly put inside the function body. For the tail recursive implementation of the factorial function, this second optimization would turn our source code into this:

public static int factorial(int n, int k) {
    while (!(n == 0)) {
        k = n * k;
        n = n - 1;
    }
    return k;
}

These optimizations prevent the deep use of the call stack. Thus, you have no occurrence of stack overflow. But, you might have an infinite loop if you mistype the stop condition. The advantage of the second optimization over the first one and all recursive implementations is that it’s really quick as there’s no use of the call stack. A language like Scala proposes this second optimization by default. A precise look at the produced bytecode shows the transformation of the recursive call into a goto.

These optimizations aren’t present in Java.

Notice that not all recursive functions can be converted to a tail recursive function. This is the case of the function that computes the Fibonnacci series. It based on the jonction of two recursive calls.

public static fib(int n) {
    if (n <= 1) return 1;
    else return fib(n-1) + fib(n-2);
}

Tail recursion in Guava

We’ve seen that the tail recursive implementation of the factorial needs two parameters. But in Guava, you can only define functions that accept a unique argument! So how do we do to transform a function of one argument into a function of two arguments?

There are two possibilities. The first one consists in creating a class that represents a pair of elements. Thus a function that takes two arguments is equivalent to a function that takes a pair of elements. The second possibility consists in using the curryfication. The curryfication is a use case of the higher order functions. With this, a function that takes many arguments is converted into a function that takes the first argument, and return a function that takes the second argument, and so on till we get the last argument. For example, the addition function (add) is typically a function of two arguments (a and b). You can write add in such a way that add takes a and return a function that waits for b. Once you get b, the function is evaluated. The interest of such an approach isn’t to force you to provide all parameters of a function at the same time. For our add function, you can use add directly to execute an addition: add.apply(1).apply(3) == 4. Or you can use add to define the function add_one just by providing the first parameter only: add_one = add.apply(1). Then, you can provide the second parameter when you want through add_one: add_one.apply(3) == 4.

Below is the implementation of tail recursive factorial based on Guava. The signature of this function is Function<Integer, Function<Integer, Integer>>. Here, you’ve to understand:

factorial is a function that takes a first parameter n and returns another function that takes a second parameter k and returns the factorial of n.

public class FactorialFunction implements Function<Integer, Function<Integer, Integer>> {
    @Override
    Function<Integer, Integer> apply(final Integer n) {
        return new Function<Integer, Integer>() {
            @Override
            public Integer apply(Integer k) {
                if (n == 0) return k;
                else return FactorialFunction.this.apply(n - 1).apply(k * n);
            }
        };
    }
}

FactorialFunction fact = new FactorialFunction();
Integer result = fact.apply(5).apply(1); // factorial of 5

Notice the use of FactorialFunction.this in order to use the outer object in the inner one. You have to reference the outer object in order to set all parameters before the recursive call. This forces you to create a named class to represent your factorial function.

Compare this implementation with the implementation below in Haskell, which is tail recursive and curryfied already. They’re both equivalent:

fact n k = if n == 0
  then k
  else fact (n-1) (n*k)

In fact, there are differences in the Guava implementation: it isn’t optimized and you create a new object for each recursive call.

Written by fsarradin

2011/11/16 at 08:31

Instantiate in Java with the Scala’s Way

with 2 comments

Case classes in Scala facilitate the instantiation by removing the use of the keyword new. It isn’t a big invention, but it helps to have a source code more readable. Especially when you imbricate these instantiations one in another. The force of Scala’s case classes is to provide a way to practice symbolic computation — in my post named Playing with Scala’s pattern matching, read the section Advanced pattern matching: case class.

Suppose that you want to declare a type that represents a pair of elements. We don’t know the type of these elements and they may have different types. In Scala, you’ll write something like this:

case class Pair[T1, T2](first: T1, second: T2)

// usage: val myPair = Pair(1, 2)

The implementation in Java below is a (hugely) simplified equivalent to the implementation in Scala:

public class Pair<T1, T2> {
    private T1 first;
    private T2 second;

    public Pair(T1 first, T2 second) {
        this.first = first;
        this.second = second;
    }

    public static <T1, T2> Pair<T1, T2> Pair(T1 first, T2 second) {
        return new Pair(first, second);
    }
}

Here is an example where I design a binary tree structure with the help of the Java version of Pair. Notice that with this approach, I don’t have to use the diamond declaration in the instantiation (ie. Pair<Integer, Pair<String, ...>>). It’s automatically determined by the type inference algorithm.

Pair<Integer, Pair<String, Pair<Boolean, Object>>> tree
  = Pair(1,
      Pair("hello",
        Pair(true, new Object())));

Now, you can say it’s really helpful!

Written by fsarradin

2011/11/09 at 00:22

Posted in Programming

Tagged with , , ,